東京大学理学部

Radiation Safety Course, School of Science, University of Tokyo

放射線取扱者講習会

(一般講習会)

光子の遮蔽と線量計算 加速器・放射光施設の安全利用 密封線源・エックス線装置の安全取扱 Shielding of Photons & Dose Calculation Safety at Accelerator & Synchrotron Radiation Facilities Safe Handling of Sealed Sources & X-ray devices

2020年度後期

Autumn 2020

Penetration of radiation

H-3

Exposure to different radiations

- α-ray: a few cm of range in the air. Stops at surface cells of organism.
 Internal exposure needs attention : all the energies are given to cells within a short range.
- β-ray : external exposure to the skin & internal exposure need attention.
- γ-ray : penetrates through the body, some without any interaction while the others with some interaction X-ray (photoelectric effect / Compton scattering) and get absorbed inside the body. The interior of the body are equally exposed to radiation even in the case of external exposure.
- X-ray (> 500 keV): analogous to γ-ray.
 X-ray (< 50 keV): damage mainly to skin.

Slowing-down and energy loss of 荷電粒子の減速 charged particles (α-ray, β-ray etc.)^(エネルギー損失)

Step-by-step energy loss due to ionization and excitation of atoms / molecules.

Fixed range of the same heavy particles for a given energy. (with a slight deviation)

Stopping power = energy loss per unit length = $-\left\langle \frac{dE}{dx} \right\rangle$

Attenuation of photons (X-ray, γ-ray)

光子の減衰(減弱)

Photons are lost by stochastic processes of absorption or scattering, but the rest remain intact through.

Exponential decrease of photon number

reaction cross section σ is proportional to the reaction probability per unit length.

Interaction relating to photons (X-ray, γ-ray)

A photon kicks **one electron** out of an atom. The photon is absorbed.

A photon is **scattered by one electron**. The photon loses a large fraction of its energy. A photon with more than a MeV energy produces electronpositron pair.

A charged particle emits a photon when they are abruptly decelerated or when their trajectory is curved.

Generation of high-energy electrons

(same particles as β -ray)

Material dependence of photon cross sections

photoelectric effect $\propto Z^{4\sim5}$ Compton scattering $\propto Z$ pair production $\propto Z^2$

Röntgen radiography

photographing using the difference in the absorption coefficient

contrast media (I, Ba, Xe): large Z = large attenuation 造影剤 (radiopaque substances) 減衰(減弱)係数大

drastically larger cross sections for larger atomic number Z of the photoelectric effect and Compton scattering

X線検査用造影剤			
* 陽性造影剤	元素	原子番号	K吸収端
•∃-ド造影剤:血管造影用	I	53	33.16 keV
・硫酸バリウム:消化管造影用	Ва	56	37.41 keV
・キセノン ガス(脳血流CT)	Xe	54	34.56 keV
* <mark>陰性造影剤</mark> ・気体:空気, 酸素, 炭酸ガス ・オリーブ油(膀胱CT)	ヨード 造影済 CH,CHC OH イオハ		CONHCH CH ₂ OH CH ₂ OH CONHCH CH ₂ OH CH ₂ OH CH ₂ OH

国立循環器病センター 内藤博昭先生のスライドより借用

Quiz #3

Choose the physical process which contributes most to the attenuation of **100 keV X-rays** in a shielding material of lead ?

- photoelectric effect
- Compton scattering
- pair production
- Rayleigh scattering

Case of soil contamination of uniform surface density : ¹³⁷Cs: 2.1 (µSv/h) / (MBq/m²) calculation by IAEA

Problem with decontamination :

half of the dose due to soil contamination of distance 10–100 m.

Radioactive contamination map : aerial monitoring by MEXT

http://radioactivity.mext.go.jp/ja/1910/2011/11/1910_1125_2.pdf 137**Cs : 2.1 (µSv/h) / (MBq/m²)** calculation by IAEA

Radioactive contamination map

= IJ版/F2GE (7JMR4F2TE) 等値線作成:早川由紀夫(群馬大学) (kipuka.blog70.fc2.com/) @nnistarさんの地図 (www.nnistar.com/gmap/fukushima.html) Contour lines drawn by Yukio Hayakawa (Gunma Univ.), Source: @nnistar 地図製図: 取用佐知子

背景地図には電子国土ポータル (portal.cyberjapan.jp) の地図を使用しました。

Calc. of internal exposure e.g. Exposure to thyroid by I-133 放射線防護のための線量 protection quantity 預託線量 committed dose (internal exposure) [Sv]

預託等価線量 committed equivalent dose 預託実効線量

committed effective dose

Sum of calculated dose over the coming 50 years (or dose until the age 70 for children and infants).

Effective dose coefficient

(for adults)

isotope	half life	ingestion (Sv/Bq)		inhalation (Sv/Bq)		
C-14	5730 yr	5.8×10 ⁻¹⁰		5.8×10 ⁻⁹		
P-32	14.3 d	2.4×10 ⁻⁹		3.4×10 ⁻⁹		
K-40	1.28×10 ⁹ yr	6.2×10 ⁻⁹		2.1×10 ⁻⁹		
I-131	8.04 d	2.2×10 ⁻⁸		7.4×10 ⁻⁹		
Sr-90	29.1 yr	2.8×10 ⁻⁸		1.6×10-7		
Cs-137	30.0 yr	1.3×10 ⁻⁸		3.9×10 ⁻⁸		
ingestion	baby (3 mo)	infant (1 yr)	child ((2-7 yr)	adult	
I-131	1.8×10-7	1.8×10-7	1.0	×10 ⁻⁷	2.2×10 ⁻⁸	

Dosimeters (personal / environment monitoring)

Fricke dosimeter フリッケ線量計

 Fe^{2+} + radiation \rightarrow Fe^{3+} , absorbance measurement

thermoluminescence dosimeter (TLD) 熱ルミネッセンス線量計

glass badge (RPL: radio-photoluminescence) 蛍光ガラス線量計

Ag⁺-activated Phosphate Glass + radiation \rightarrow (UV) \rightarrow fluorescence

 $Ag^+ \rightarrow Ag^0, Ag^{++}$ production of color centers ガラス線量計 **glass dosimeter** : cobalt glass → color center (colored)

optically stimulated luminescence (OSL) badge

ポケット線量計 **Pocket dosimeter**: ioniz. chamber / semiconductor detector

film badge フィルムバッジ:Silver halide film AgBr

他機関施設でのバッジの使用(加速器・放射光など)

Using Your Radiation Badge (at accelerators, SR facilities)

- 国内の放射線施設を利用する場合 <u>at domestic facilities</u>
 - 東大理学部のバッジも持参することを原則とする
 Bring your UTokyo-Sci. badge to domestic radiation facilities.
 - - 飛行機での手荷物検査によるバッジの被曝に留意
 Try to avoid X-ray survey of your badge.
- 海外の放射線施設を利用する場合

- <u>abroad</u>
- 特に不要であれば、東大理学部のバッジは
 - むしろ<mark>持参しない</mark>ことを推奨する

We recommend that you do <u>not</u> bring your badges abroad, As long as the facility abroad takes care of your radiation protection. - 持参する必要がある場合、手荷物検査や機内での被曝について は、後から記録の修正が必要な場合がある If you need to bring it abroad, give us reports on possible radiation

exposure of your badge at X-ray survey and during your flights.

H-16

[[]出典] 電気事業連合会:「原子力・エネルギー」図面集2003-2004、p.130

Optimization : all exposures shall be kept as low as reasonably achievable, economic and social factors being taken into account.

(**ALARA** principle = As Low As <u>Reasonably Achievable</u>)

Dose limit : **1 mSv/yr** for general public (in addition to natural BG). 100 mSv/ 5 yrs and 50 mSv/yr max. for male radiation workers.

Dose limit for individuals

Occupational exposure for

H-18

線量限度の一覧表(作業者)

for Radiation workers				1990勧告	1977勧告	
Effective dose women pregnant women	100 mSv / 5 yrs and 50 mSv / yr 5 mSv / 3 mo. 1 mSv / period of pregnancy		実 効 線 水晶体等価線 皮膚等価線 手・足の等価線 その他の組	量 20mSy 量 150mSy 量 500mSy 量 500mSy 織 —	v/年(5年平均) v/年 v/年 ¹⁾ v/年	50mSv/年 150mSv/年 ²⁾ 500mSv/年 500mSv/年 ³⁾ 500mSv/年
Equivalent dose eye lens skin abdomen surface of pregnant women	150 mSv / yr 500 mSv / yr 2 mSv / period of pregnancy		1) 被ばく部 ついての Annual ま 効 線 量	1 mSy/在	深さ7 mg/cm ² , される。 00での場合で、65 200一覧表(- 197	面積1cm ² の皮膚に 歳までの就業期間の被曝 歳までのリスクの最大値) 一般公衆) 7 勧告
Public exposur for General pub Effective dose	e olic I mSv / yr		水晶体等価線量 皮膚等価線量 その他の組織	15 mSv/年 50 mSv/年 ³⁾ 一	50 mSv/年 50 mSv/年 50 mSv/年 ²⁾	
Equivalent dose eye lens skin			1) 1985年のパリ 限度を5mSv 2) 1985年のパリ Applaを (毎年被曝の場合	声明で主たる限度 //年とした。 声明で実効線量当 FISK、 本本 の また の また の の の の の の の の の の の の の 	を1年につき1mSvと 量の制限によって不要に りししの面積1cm20 最大値)	して、補助的な こなった。 Precomm.
Protection by	Jpn domestic l	an	(出典)(1990年ICR 「ICRP199 50ページ]	RP新勧告と1977年 10年勧告-その要点	ICRP勧告における線 を考え方-」、草間朋子	量限度値対照表) 編、日刊工業新聞社、

Radiation control area 放射線管理区域

Sealed sources 密封小線源

α-ray source

Safe Usage of X-ray devices

エックス線装置の安全取扱

図2 シャッター付近の照射ランプ

図3 外部照射ランプ

図4 PC 上のシャッター状況

図5 装置制御板上の表示

Check open/close of the shutter with multiple indicators.

複数の表示で シャッターの開閉状態を 意識して確認する。

C分類でインターロックを 解除するときは十二分に 確認する。

Be extremely careful when you unlock the interlock

ビームの調整やメンテナンス 等では、装置の電源を切り、 シャッターが閉じて いることを確認する。 Turn off the power of the devi before beam adjustment

and/or maintenance. 使用記録を作成し、

使用記録を作成し 整備すること。

Make records of usage

Safe Usage of X-ray devices

図1 東京大学における研究用エックス線装置の分類

東京大学におけるエックス線装置の分類

ice來明刑	Α	Completely sealed		
Closed system	В	Interlock used all the time		
	С	Interlock used appropriately		
非密閉型	D	Equipments installed in a room		
non-closed system	Ε	Not fixed / mobile		

Classification of X-ray devices at UTokyo

H-24

Summary of Quizzes

- **#1**: There are three categories of radiation workers at School of Science, the University of Tokyo : "RI & Accelerators", "X-CDE" and "X-AB". One of these categories do not require medical check for authorization as a radiation worker. Answer which category.
- **#2**: From next April, the equivalent dose limits to the lens of the eye will be renewed to...

Annual average of $\bigcirc mSv$ for 5 years (With no single year > $\underline{\circ \circ mSv}$)

#3: Choose the physical process which contributes most to the attenuation of 100 keV X-rays in a shielding material of lead?

- photoelectric effect
 Compton scattering

- pair production
 Rayleigh scattering

Write the answers in your Attendance Sheet for submission.